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SECTION I

INTRODUCT ION

In netted air defense and air traffic control systems, data from
the long range radars are routed to a Sector Operations Center and
stereographically projected onto a common coordinate plane for presenta-
tion vo system operatcrs on the display consoles. In this manner, the
overlap coverage of the radars is expleii.d and a composite air sur-
veillance picture is presented.

The projection of aircraft information from system radars may be
separated into two parts namely conversion and transiorwmacioa for
couvenience in aralysis. The two aspects of the probiem may be
defined as fcllows:

(a) Conversion of slout range, azimuth and height data
inte rectangular coordinates in a plane with the
radar site as origin.

(b) Transformation of these coordinates from the radar
plane into rectangular coordinates in the common
coordinnte plane.

Reference 3 reports on an accurate and simple solution to the
conversion problem. The data of slant range, height and azimuth
angle are stereographically converted to rectangular coordinates in
a plane tangent to the earth at the radar site location. Assiming
tangent planes have been so established at multiple radar sites, it
i8 desired to transform the coordinates of radar data in the various
radar planes into rectangular coordinates in the common coordinate
plane with accuracy and simplicity. All system computations such as
aircraft tracking, interceptor control and information display are
performed in the common coordinate plane.

This report focuses on the transformation aspects of the pro-
jection problem., Its purpose is to supplement Reference 3 and to
derive and develop the gtereographic transformation equations more
completely than is accomplished in References 1 and 2, In
particular this report:

{(a) Derives the stereographic transformation equation
in complex notationm.
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(b)

(c)

(d)

(e)

£

(g)

(h)

1)

&)

Derives the closc¢d form sulution to the stereo-
graphic transformation aquation in terms that
are suitable for real time computation.

‘Derives approximatfons tc the closed form solu~
tion of the stereographic transformation equation
in terms that are suitable for real time computation.

Depicts error curves assor.ated with the approxima-
tions to the closed form solution of the stereographic
transformation equation.

Depicts contours of constant distortion induced by
the mapping of points on the surface of the earth
ellipsoid onto the surface of conformal spheres of
varying radii,

Depicts contours of constant distortion induced
by the projection of the surfzce of a conformal
sphere onto a common coordinate plane.

Presents contours of constant distortion induced
by the overall projection of points on the sur-
face of the earth ellipsoid onto a common coordi-
nate plane.

Demonstrates how the contours of constant distor-
tion are influenced by the chofce of an earth's
radius and recommends a method for determining

an optimum earth radius that minimizes the dis-
tortion associated with the overall projection
process.

Demonstrates the impact of tne choice of the origin
of the common coordinate system on the distortion
contours.

Summarizes the stereographic ccnversion and trans-
formation equations.
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SECTION II

TPE TRANSPCRMATIGN EQUATION

INTRCIRICLION

Appendix A derives the equation for transforming the coordinates
of data from the plane of the radar site to a common coordinate plane
in complex notation. This section of the report presents the trans-
formation equation in complex notation, explains the various teras
therein and expresses equation (1) in terms of its real and imaginary
components. Because of the computational difficulties associated
with calculating aircraft locations in the common coordinate plane
via tke derived expression, several approximations that combine sim-
plicity with accuracy are also presented.

From equation (A-13) of Appendix A, the transformation equation
in complex notation is: '

where:

W = U+ iV are the rectangular coordinates of an
aircraft with respect to the commnn coordinate
origin.

Z = X + iY are the rectangular coordinates of an
aircraft with respect to the radar coordinate
origin.

B = 1is a rotation angle which mckes the axes of
the Z and W, the radar and commcn coordinate
planes more nearly parallel.

W_ = U, + 1V, are the rectangular coordinates of a
radar vith respect to the common coordinate
origin.

@)
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Hr = Ur - 1Vr is the complex conjugate of wr.

E = the radius of a spherical earth.

With respect to the componeris of the W term in equation (1),
the positive U axis is directed toward east and the positive V axis
is directed toward north at the origin of the system. With respect
to the components of the Z term in equation (1), the poaitive X axis
is directed toward east ard the positive Y axis is directed toward
north at the origin of the radar coordinate system. The coordinate
axes in the radar coordinate plane 2re shown in Figure 1.

Given the measured slant range from the radar to amn aircraft,
the heizht of an aircraft above sea level and the elevation of the
radar above sea level, the stereographic ground range R, the dis-
tance from the radar to the aircraft ia the radar plane, is obtained
as described in Reference 3. Having obtained the ground range R,
the rectangular coordinates of the aircraft with respect to the
radar coordinate origin may be expressed as:

z = |z]ell/D-0] rellF/2)-8) _ prein o + 1 cos 6]
Therefore, the rectangular coordinates of Z may be written as:

X = RSin 6

Y = RCos 8

where:
R is the projected ground range of the aircraft.

@ 1is the azimuth angle measured clockwigse from the
positive Y axie which is oriented toward north
at the location of the radar site.

The angle B in equation (1) is derived in equation (A-9) of
Appendix A and depends simply upon the positional coordinates of
the radar site with respect to the origin of the common coordinate

plane. These coordinates are defined by their latitudes L and
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longitudes A. Latitudes north of the equator are defined as positive
and latitudes south of the equator are defined as negative. Longi-
tudes are defined as positive east of the prime weridian and negative
west of the prime meridian. From equation (A-9), 8, which is a con-
stant for any radar with respect to a particular common coordinate
origin, is defined as follows:

(Sin L + Sin L ) sin (0 -))
g = Tan-l o 2
Cos L Cos Lo + (1 +8in L Sin Lo) Cos (l-ko)

L,A are the latitude and longitude of the origin
of the tangent plane at the radar saite.

LO,A are the latitude and longitude of the origin
of the common coordinate plane.

The angle 8 may be considered as a rotation of the Z plane with
respect to the W plane. The effect of the rotation, which 1is
counterclockwige when A < xo and clockwise when A > Ay, is to make
the axes of the radar plane more nearly parallel to the axes of
the common coordinate plane.

Considering W, which represents the cocrdinates of a radar site
with respect to the common coordinate origin, Appendix B derives the
equations which stereographically map points on the surface of the
earth onto a rectangular coordinate plane for a spherical earth.
These equations are used to project points such as the location of
a radar site onto the common coordinate plane. From equation (B-5)
of Appendix B, the rectangular coordinates of a radar site located
at latitude L and longitude A with regpect to the common coordinate

plane are:

Sin (x-xo) Cos L
Uy = ZE{ ¥ SinLSin L, + Gos L Cos I, Cos (A-%)

Sin L Cos 1, - Cos L Sin L Cos (A-Xo)

Vr = ETT S LSin I, + Gos L Cos I, Cos (A-)g)

(2)

3)




where

L, are the latitude and longitude of the radar
site, the coordinates of which are projected
onto the common coordinate plane.

are the letitude and longitude of the origin
of the comaon coordinate plane.

Ur,V, are the rectangular coordinates of the point

A designated by L,) in the common coordinate
. plane.

Thus far, a brief description of each of the terms in equation (1)
has becn presented. Equations for obtaining the rectangular coordi-
nates of an airciraft in a plane tangent to the earth at the location
of a radar site have been presented. Assuming a common coordinate
tangent plane has been established at a location different from the
radar site, results have been derived for the rotation angle 8 which
make the axes of the radar plane more nearly parallel to those of
the common coordinate plane. Additionally, equations have been
derived which project the earth coordinates of a vadar onto a point
in the common coordinate plane. It is now desired to employ this
information in expressing equation (1) in terms of its real and
imaginary components.

CLOSED FORM TRANSFORMATION EQUATION
Equatfun (1) is the complex representation of an aircraft's posi-

tion in the common ccordinate plane. Expressing the numerator of this
ecuation in terms of R, 6, 6 and |W.|, we note that:

ze 1B = (X + 1Y) (Cos B ~15in 8) = (X Cor B + Y Sin 8) + 1(Y Cos 8-X Sin B8)

= R Sin (6 + ) + 1R Cos (0 + B) ~ A + 1B

Therefore, the numeratcy of equation (1) is:

[Rsin (8 +8) + |W] stnyl + 2[R Cos (8 +8) + |¥ | Cos y] ~C + 1D

K
m‘xw.:adj -
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The denominator of equation (1) may be expressed in terms of R,
E 6, B, wr and E as follows <

.-..j_B —
| L o - A+ 1B, - 1) . _[(ura +V_B) + 1(U_B VrA1

3 42 4e 4E2
3 |
P UA+VB UB - VA
3 = {1 - 5 -1 5 = G - iF
- | 4E 4E
where:

A = R Sin (8 + B)
3 B = RCos (86 +8)
c = A+Ur-RSin(9+B)+lwr| Sin y

D -B+vr-RCoa(6+B)+|Hr|Coay

UA+ VB 422 - |W_| R Cos [y - (8 + 8)]
4’ 4E
‘ .. UB - VA i |wr|nsm [Y—(6+B)_]
» ,‘. I;,Ez 4E2

1 X
A - 2 2]
lw.| [u,° + V.
1 -1
g Y = Tan Urlvr\
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’ Employing the above definitions, equation (1) may be written as:
- W'"*‘”'Efig“ (GC-F;))+;(GD+FC)
. 7 G"+ F
3 with:
|
4-,‘ U -——-—~Gg - Fg and V = _______Gl; + Fg
2 G" +F : G" +F
. 3N Evaluating GC ~ FD, GD + FC, and G + F> we obtain:
r uraz + |Wr|2R Sin [2y - (8 + 8)]
GC-FD = RSin (8 +8) +U_ -
r 4 2
K E
£ 2 2 .
VrR + Iwrl R Cos {2y - (8 + B)]
3 GD+ FC = RCos (68 +8) +V -
; T 2
4 4E
2.2
2|W_|R Cos [y - (8 + B)] |w_|“r
3 2 2 r T
- G° + F° = - 5 + 73
E 4E (4E™)
’ Therefore, the closed form solution to the stereograohic trang-
3 formation equation is:
2 2
E U R"+ thl R Sin [2y - (8 + B)]
p R S$in (6 + B) + U_ -
T 2
d U = 4E
ZIWrIR Cos [y - (6 + B)] |Wr| r ]2
- 1 - 7 + 5
- 4E (4E7) _ A
. ) 2 (4)
- V_R"+ W |” R Cos [2y - (0 + 8)] ]
RCos (8 +8) +V_ - 3
: r
H 4E
- 21w _|R Cos [y - (6 + B)] EA
N 1-—= ) + 2
| 4E° 4E
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Because of the computational difficulties associated with cal-
culating aircraft locations via these expressions for each radar
datum, an approximation that combines gsuitable accuracy with minimal
processing requirements is desirable.

APPROXIMATE TRANSFORMATION EQUATION

Equation (1), whicn for convenience is reiterated below, projects
aircraft onto a tangent plane centered at the common coordinate origin.

Z o+ W
W o= —
z W
1_
4E°
where
]
z = ze 1B
Expanding equation (5) ylelds:
v _ 1 o g s . N
' Z W . Wz
W o= (2 +W) [1- | =@ +w) 1+Z<-"2)
L 4E n=]l 4E
w© — 1 n o0 - ] n
Wz \ Wz
= W +W Z t— +2 +12 Z "2
T n=1]| 4E n=11 4E
-] — - ) [ — ] n+1
, = @ aht @ @)
-wr+|wrlz RS + 2 +z: R
n=l (4E°) n=1 (4E°)
o o — ' o — ]
thIZ (wt)n (2 )n+l (wr)n (2 )n+1
=Wt R 7
4E n=0 (4E°) n=0 (4ET)
™ —_ 1 4
IVr|2 ] (wr)n z )n+l
= W + |1+ 3 )
r 4E n=0  (4E°)

10

-

)]

(6)

o
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Let 0 and vy be the azimuths of Z and W, respectively. Positive
values of 6 are measured clockwise from true ncrth at the radar site
and in the radar plane. Positive values of y are measured clockwise
in the common coordinate plane relative to true north at the origin
of the W plane. Positive values of the rotation angle B, which is
derived in Appendix A and presented in equation (2), are measured
- counterclockwise from east at the radar site and in the radar plane.
_ﬁ In order that 8, vy and B may properly be combined, it is necessary
b ] to describe 6 and y in the same coordinate system as that in which 8
3 is measured. The angles corresponding to 6 and y in a8 system where
3 positive angles are measured counterclockwise from east are [(7/2)-8]
E: and [(n/2)—y] respectively. Therefore, we may write:

= .\n n ~in{(r/2) - ¥]
(Wr) - IWr| e

' _¢p Dl - _salntl
@ )n+1 - (Ze 18) - |z|ei[(w/2) S]e i8

|2|*H (LD (/D) - (0 + B)] T A /2) - o

-Iz
wvhere:
]
6 = (6 +8)

From equation (6) and employing the above definitions, W may be
vritten as: .

n n+l
W |® 2]

B W = W 4K - ~Anl(1/2) = y] 4(e41) [(/2) - 0]
; r a0 (4E5® -

n n+l
v ™ 2] AL/ - 6 +n -vH

B - W_+K

- r n=0 (42%)"

[

b | lw.|® 2| ™+

| - W rE 2 Sin [(8+8)4n(6+8-y)] + 1 Cos [(6+48)+n(648)]
| n=0  (4EH)"

ez - ]
e |

;iz, n

'iow!'—»'&?-v'm--- _ o - L 7 o i i o A O 5303 1258, 5 o




E: Therefore, the components of W are:

DG

3 U = + K Sin {(6 +B) +n0 (0 +8 - v)]

g n=0 (D"

1 (7)
> ol

¥, V.= V. +K —— o Cos [(8 +8)+n (8 +8 -v)]
3 , n=0  (4E7)

.w where:

: - v |?

2 K = 1+ 3

2 4E

é Approximations to U and V may be obtained by terminating this series

b solution to equation (1) after an appropriate number of terms.

First Order Approximation

- The first order approximation to equation (1) is obtained by

- taking the firat term of equation (7) as follows:

3 u-Ur+1<|z|sm(e+s)-ur+xns1n(e+8)

’ (8)

V = Vr+K|Z| Cos (8 + B) =V_+ KR Cos (8 + B)

The error in this approximation to equation (1) is on the order
of the first term neglected. Values for the first term neglected,
namely Klw R /4E2, are oresented in Figure 2 for ground ranges from
25 to 200 miles and for |W | from 0 to 550 miles.

!
H
i
3

B
N

Pigure 2 gshows the trausformation errore associated with a first
order approximation to equation (1). These errors exceed 0,4 miles at
large values of R and W and approach 0.25 miles at intermediate
values of R and W Tﬁe compoaite projection error is the sum of
the transformation error as shown in Figure 2 and the conversion error
as shown in Reference 3.
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When aircraft height information is avuilable, the upper limit
on the conversion error is expected to be 0.1 miles. This result has
been obtained by consideration of Figure 6 of Reference 3. Assuming
a maximum distance between a radar site and the projection center of
275 miles, the maximum transformation error from Figure 2 herein is
anticipated to be 0.25 miles using a first order approximation. The
composite maximum error is 0,35 miles, which is deemed unacceptable.
Consequently, when aircraft height information is available, a higher
order approximation to equation (1) that will essentially decrease
the transformation error to zero as will be shown hereafter, is
required.

From Figure 12 of Referemce 3, it ‘s noted that errors in excess
of one mile occur in converting slan’ range to ground range when air-
craft height data 1s unavailable, fhe fundamental remedy to this
problem is to obtain height inf-rmation on the aircraft and thereby
diminish the relatively large conversion error rather than attempting
to decrease a first order transformation error that may at most equal
G.25 mileg. Therefore, when aircraft height information is unavail-
able, a first order approximation to equation (1) is acceptable.

Second Order Approximation

The second order apprcximation to equation (1) is obtained by
taking the first two terms of equation (7) as follows:

R2|wr| Sin {2(6 + B) - v]

4E2

u = Ur + K [ R Sin (8 + B) +

(9)
Rzlwr! Cos [2(0 + B) - v]

4E? ,

vV = Vr + K l R Cos (0 + B) +

The error in this approximation is on the order of the third
term Sf the jnfinite series. Values for the third term, namely
KW, | R3/16E* are Ytesented in Figure 3 for ground ranges from 75 to
200 miles and for |W.| from 0 to 550 miles. Examination of Pigure 3
shows that the secona order approximation to equation (1) essentially
yields identical results to the closed form selution to the stereo-
graphic transformation equation.

14
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For programming convenience, equations (9) may be further sim—
plified by a numerical analysis of the second order range term. When
height data is available a suitable expression for the ground range R,
which ig derived in equation (8) of Reference 3, is given by:

[s? - @-n)?y*

2
1+E

R =

where:
S 1is the measured slant range of the aircraft.

ie th

W

H elevation of the aircraft above seu level.
h is the elevation of the radar above sea leval.
E is the radius of a spherical earth,

Substituting this result into the U component portion of equation (9)
yields:

o2 2.3 2 2, (W |ea.
U= U+ (S —(n—g) IZ Sin (o+g) + I8 ~(B-h) ] [Txlst. f2¢e+8) - y]

3 2.2 2
1+% 1+ 3 4E

Calculating the maximum magnitude of tge {]#_|sin [2(e48) ~ Y]}/4Ez)
term, we obtain the result 1.056 x 107 when’ Wr| equals 500 miles.
This multiplier of the R® term is miniscule; consequently, the
denominator of the R? term may be changed to (1 + 2/E) while retain-
ing an accuracy of better than 3.1 x 104 miles for values of R
through 225 wiles and for values of |W_| through 500 niles.

Rewriting equations (9) as suggested, we obtain a revised approx-
imation to equation (1) that retains the sccuracy of equaticns (9)
while simplifying the formulation and processing requirements. The
simplified second order approximation is:

2 2 )
U = U +T (s%-(u-0)21" sin (o4p) + {5 =(H-D)7] !"zl281n [2(848) - y]
) 4
! (9a)

2 2 .
Vo= v+ T ISP 7)% cos (o4) + {8 2CHch) ]iwflzc“ [2{646) - v]
4E
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where:

T is a site dependent constant and may be precalculated and stored as
an adaptation parameter.
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SECTION IIIX

DISTORTION INDUCED BY PROJECTION

INTRODUCTION

The earth is not a sphere but is an ellipsoid that is approxi-
mately 23 miles greater in equatorial than polar diameter. This fact
has been deliberately ignored until this section of the report as it
appeared wiser to initially consider a spherical earth and later to
consider the implications of the earth's ellipticity. A topic that
must now be addressed i1s the value of an earth's radius that should
be used in any of the equations which are dependent upon the earth's
size and shape. A related topic is the distortion or error rhat is
introduced by the entire mappirg process.

Any projection of an ellipsoid onto a plane distorts either dis-
tances, angles or areas, it being impossible to simultaneously pre-
serve all of these parameters. Furthermore, no projection of an
ellipsoid onto a plane can simultaneously preserve both angles and

areas. The stereographic projection preserves angles but distorts
distances.

This section of the report will address the manner in which the
ecarth's ellipticity must be taken into account. Additionally, the
magnitude of the distortion induced by the projection of an ellipsoid
onto a plane will be discuassed. Considerations relative to the choice
of an earth's radius in the transformation equations will be discussed.
The effect of the choice of an earth’s radius upon the overall distor-
tion associated with stereographic projection will be quantitatively
preseated.

By way of introduction to these topics, the stereographic pro-
jection must be considered in greater detail,

STEREOGRAPHIC PROJECTION

The process of stereographically projecting points onto a plane
is accomplished in what may be considered as two distinct steps.
The surface of the earth is approximated by the surface of an ellip-
sold, which is obtained by rotating an ellipse about its minor axis.
The first step maps points on or above a designated point omn the
ellipsoid onto a sphere which will be called the conformal sphere.
The s 'cond step maps points on the conformal sphere onto a plane
tangent to the conformal sphere.
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The mapping of points onm or above a designated location or lhe
ellipsoid onto a sphere is accomplished by the following relations
as indicated on page 34 of Reference 4:

T ¢ \| . L] W\l . f1-¢star]®?
Tan [(4 * 2)] Tan [(4 + 5)} {1+E'Sin L} a0

7

where:

L,A are the latitude and longitude of the point on the
ellipsoid.

1
¢,2 are the latitude and longitude of the corresponding
point projected onto the sphere. This latitude is
defined as the conformal latitude.

£ = .08199189 is the eccentricity of the earth.

Therefore, the equations for mapping an ellipsoid onto a conformal
sphere and for stereographically mapping the conformal sphere onto a
plane are the same as those that have been presented for a spherical
earth except that the conformal latitude ¢ must be used in place of
the geographic latitude L. For computational convenience, the con-
formal latitude ¢ may be obtained from the geographic lrtitude L by
a serles approximation to equation (10).

As noted on page 34 of Reference 4, the mapping from the ellip-
soid to the sphere is conformal. The mapping from the sphere to the
plane is also conformal. Each step preserves angles; hence, the
resultant stereographic projection is a conformal representation of
the earth ellipsoid on a plane.

DISTORTION AND EARTH'S RADIUS

The surface of an ellipaoid cannot be molded into a sphere with-
out some distortion or error. Similarly, the surface of an appropri-
ately chosen sphere cannot be spread out flat without some distortion.
In general, arc lengths that are projected onto a planar surface are
stretched as the distance between the point of tangency and the point
being projected increases. The magnitude of the stretching is non-
linear. Toerefore, groups of positional reports frca the same air-
craft exhibit distortionse when projected on a plane. Datsa from a con-
stant speed aircraft, that is constrained to move at a constant altitude
above the earth's surface, portray apparent accelerations when projected
onto a plane.
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Intuitively, it appears evident that the distortions described
above can be minimized by a judicious choice of the earth's radius.
The following paragraphs will show quantitative relationships between
the choice of an earth's radius and the resuitant distortion for the
mapping from the ellipsoid to the conformal sphere and for the pro-
jection of the conformal sphere onto a plane.

Mapping from Ellipsoid to Sphere

The scale factor associated with the mapping of points from an
ellipsoid onto a sphere is defined as the ratio of the arc length
along the surface of the sphere to the corresponding arc length along
the surface of the ellipsoid. A scale factor of unity indicates that
distances are completely preserved and that there is no distortiom in
the mapping process. F¥rom page 86 of Reference 5, the scale factor
k,, associated with the projection of the ellipsoid onto the conformal
sphere is:

ds
a1 _ECos ¢
k1 ds2 N Cos L (1
where:
kl is the scale factor.
ds is the arc length along the surface of the conformal

sphere.
dsz is the arc length along the surface of the ellipsoid.
E is the radius of the conformal sphere.
L is the geographic latitude. This is the angle which

a normal to the surface of an ellipsoid makes with
the equatorial plane as shown in Figure 4.

$ is the conformal latitude of the point whose geo-
graphic latitude is L.

N is the distance MP in Figure 4 where a normal to the
ellipsoid at point M has been drawn until it intersects
the winor axis at P. The normal N is mathematically
expressed as Eq (1 - €2 $in2 L)~% where Eq = 3444.054
miles is the earth's equatorial radius and where e2 =
.00672267 is the earth's eccentricity squared.

20

R R O e

T T N A A e st R




| b A

| A

j S

;| Figure 4

. 3 NORMAL TO THE ELLIPSOID

earth's radius at the equator, the earth's eccentricity, the geo-
graphic latitude and the vadius of the conformal sphere. Therefore,
we pay set the scale factor k; equal to unity at a designated latitude
and snlve for the resultant radius of the conformal sphere according

|
. "f;j Equation (11) expresses the scale factor k; in terms of the
|

= to the relationship:
o
N N Cos L
] g - B Con a2)
"l‘bff Equation (12) determines the radius of the conformal sphere

that will result in a inity scale factor at the latitude that is
Lo used in the computation. Table 1 ghpows the radii of the conformal
D | sphereg that result from solving equation (12) for latitudes L of O,
< i 20 and 40 degrees. The coaformal latitudes ¢ that co-respond to

R theve geographic latitudes are also shown.
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Table 1

Earth Radius Versus Latitude (Ellipsoid To Sphere)

Geographic Latitude Conformal Latitude Earth Radius (Mi)
0.0 0.00 3444.05
20.0 19.88 3442.71
40.0 39.81 3439.29

Table I shows the radii of the conformal spheres that resuli
from solving equation (12) using the indicated geographic latitudes.
When the mapping of the ellipsoid onto the sphere is centered at
the equator, the optimum radius of the conformal sphere is the earth's
equatorial radius of 3444.05 miles. When the mapping is centered at
more northerly latitudes, the optimum earth radii decrease as shown
in the table.

Let us now determine the scale factors or magnifications that
result from solving equation (11) using each of the earth radii con-
tained in Table I over a designated set ¢f latitudes. It is evident
that the radius of the conformal sphere, which is calculated based
upon 8 particular latitude, will result in magnifications closest
to unity over a geographical area that is centered at the same
latitude. To quaatify this judgment, Table II shows the solutions
to equation (11) for latitudes between 36 and 44 degrees when E
assumes each of the three values shown in Table I.

Table II

Magnification Values

Latitude/Corresponding Radius of Conformal Sphere

Letitude 6.0/ 3464.05 20.0/3442.71 40/3439.29
36 1.00116 1.00077 0.99977
38 1.00127 1.00088 0.99989
40 1.00138 1.00099 1.00000
42 1.00150 1.00111 1.00012
44 1.00162 1.00123 1.00023
22
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Each column of Table II shows the magnification value that re~-
sults from solving equation (11) using the indicated value of the
radius of the conformal sphere while varying the latitude from 36
to 44 degrees., When the radius of the conformal sphere ies calculated
based upon unity magnification at latitudes of either 0 or 20 degrees,
digstances on the ellipsoid over all latitudes from 36 to 44 degrees
are stretched when projected onto the respective spheres. When the
radius of the conformsl sphere is based upon unity magnification at
a latitude of 40 degrees, distances on the ellipsoid at latitudes
above 40 degrees are elongated whereas distances below a latitude
of 40 degrees are contracted when projected ontc the sphere. As
expected, the magnitudes of the elongations and contractions are
minuscule. Figure 5 depicts the situation when the earth's radius
is chosen based upon the latitudinal center of the geographical area
of interest, designated L. As indicated in Table II, this radius
of the conformal sphere is optimum in that it results in magnifica-
tions closest to unity over the area of iInterest.

Mapping from Ellipsoid to Plane

The scale factor k., that is associated with the process of map~
ping points on the confGrmal sphere onto points on the common coordi-
nate plane is from page 41 of Reference 4:

2
2 " T¥5In ¢ SIn ¢, ¥ Cos ¢ Cos ¢, Cos (1) (13)
where:
$,A are the conformal latitude and longitude of the
point to be projected,
¢0,Ao are the conformal latitude and longitude of the

origin of the’common coordinate plane., This
origin will be referred to as the projection
center.

From equation (B-1) of Appendix B, it will be noted that the de-
nominator of equation (13) may be written as:

1+ Sin ¢ Sin ¢° + Cos ¢ Cos ¢° Cos (A—Ao) =1+ CosD
where:

D is the angle that subtends the great circle arc from (¢,})
to (¢° ’XO) .
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The magnification kj equals unity at the projection center and
increases as the distance from the projection center increases. Con-
tours of equal scale magnification are concentric circles about the
projection center. Figure 6 shows contours of equal magnification for
several values of k2 where the horizontal azis 1s a range of longitudes
between -9 and +3 degrees and where the vertical axis is a range of
latitudes between 36 and 44 degrees. From Figure 6, it will be
observed that the scale is unity at the projection center, that the
scale increases with the distance from the prcjection center and that
contours of equivalent magnification are symmetric about the vertical
axis. The projection center L, in Figure 6 is 400, -39,

The total scale factor associated with the projection of the
ellipse onto the piane {8 the product of the scale factors associated
with the two steps of the mapping process. Therefore, the total
magnification designated kt is:

2E Cos ¢ (14)

kt “NcCosL [1 + Sin ¢ Sin ¢° + Cos ¢ Cos ¢o Cos (A-Ao)i

Table II has presented the magnification values associated with
the projection of the ellipsoid onto conformal spheres with varying
radii. Figure 6 has presented contours of equal magnification for
the mapping from the conformal sphere onto the plane. Equation (14)
provides a method for combining the magnifications associated with
the two steps of the mapping process over a designated range of
latitudes and longitudes for a specified radius of the conformal
sphere. .

For comparative purposes equation (14) has been evaluated using
as the radius of the conformal sphere:

(a) The earth's equatorial radius

(b) The earth radius that is optimized for the mapping
from the ellipsoid to the sphere when the mapping is
latitudinally centered at 40 degrees.

Using the earth's equatorial radius as the radius of the conformal
sphere, Figure 7 shows contours of equal magnification for the same
range of latitudes and longitudes that were used in Figure 6. Examina-
tion of Figure 7 shows that contours of equal mangification remain
symmetric about the vertical axis. Due to use of an earth's radius
that is better suited to a projection centered at the equator than to
a mapping centered at a latitude of 40 degrees, the contours of equal
magnification are larger than is necessary. The magnification 1is
1.00138 at the projection center and increases away from the projec-
tion center.
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Figure 8 shows contours of equal magnification using the earth's
radius that is optimized for the mapping from the ellipsoid to the
sphere when the mapping 18 latitudinally centered at 40 degrees.

With cursory consideratlon, this choice of an earth's radius appears

to minimize distance distortions cver the geographical area of interest
since k, is unity at the latitudinal center of the projection and
since k, is completely determined for any point (L,)) given the pro-
jection“center (Lo, Ao).

The magnification contours of Figure 8 are analogous to those
of Figure 6 except that the contours of Figure 8 are no longer
symmetric about the horizontal axis through the projection center;
these contours are flattened to the north and elongated to the south
of the projection center. Like Figure 6, the magnification is unity
at the projectior center, increases away from the center, and is
symmetric about the vertical axis.

Through this point in the discussion, Figure 6 has presented
contours of equal magnification associated with the mapping from the
conformal sphere to the plane. These contours are independent of
the choice of an earth radius. Figures 7 and 8 have presented con~
tours of equal magnification based upon the overall projection from
the ellipsoid to the plane, These contours zre dependent upon the
choice of an earth's radius and have been depicted for radii that
minimize the distc—tion associated with the mapping from the ellip—
soid to the conformal sphere over geographical areas that are
latitudinally centered at 0 and 40 degrees respectively.

A common feature of Figures 6 through 8 is that the magnifica-
tion 13 greater than or equal to unity at the projection center and
1nacreases as the distance from the projection center increases.
What would appear more desirable, as it would tend to decrease the
registration error between observations of the same aircraft by
different radars, i1s a unity magnification that would occur approxi-
mately midway between the projection center and the extremity of
radar coverage. This would effect magnifications of less than
unity at the projection center, a contour of unity magnification
within the geographic area of coverage and a magnification contour
that exceeds unity at the extremity of radar coverage,

To accomplish the desired result equation (14), which for con-
venience is reiterated below, will be considered when sgetting the
magnification k_ to unity at a particular value of (L,A) and for a
particular projgctiOn center (Lo,ko).

- 2E Cos ¢
t NCOSL [1+ Sin ¢ Sin ¢° + Cos ¢ Cos ¢° Cos (A-Ao)]

k (15)
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Solving equation (15) for the resultant radius of the conformal sphere
E, we obtain:

N Cos L [1 + Sin ¢ Sin ¢o + Cos ¢ Com ¢0 Cos (k-xo)

s 2 Cos ¢ (16)

Equation (16) determines the radius of the conformal sphere that will
result in unity magnification at the point (L,A) for the particular
projection center (L ,A ). Table II1 sasws the radii of conformal
spheres that result grom solving ejuz:ion (16) for several valuea

of (L,A) when the projection center (L ,) ) is chosen as (40°, =3°).
The initial value of (L,)), is of no pracgical importance since the
projection center is approximately 2400 miles away from the point
(0°, =7°). Nevertheless, it has been included in Table III in order
to better understand the implicaticns of equation (16).

Table III

Radius of Conformal Sphere (Ellipsoid To Plane)

L Earth Radius
0,-7 3041.62
42,-7 3435.45
38, 0 3437.21
40,-3 ' 3439.29

Comparing the earth radil in Table III to those in Table I, we
note that the earth radius corresponding to (0,~7) is approximately
400 miles less than any of the other earth radii. When the points
(L,A) are proximate to the projection center, the resultant earsth
radii are approximately equal to the earth radius that waa presentad
in Table I and which was opiimized for the mapping from the ellipse
to the sphere. When the point (L,)) equals the coordinates of the
projection center, the resultant earth radius equals the earth radius
of Table I which was optimized for the mapping from the ellipse to
the sphere.

Figure 9 shows the contours of equal magnification that result
from solving equation (15) while requiring that a unity magnification
be obtained at the point 0°, -7°. The appropriate earth radius that
was used in obtaining th- contours 1is 3041.62 miles and the projection
center is 40°, =3°. The geographical area over which the contours
are presented is identical to that of the previous figures.
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Examination of Figure 9 shows that the scale equals 0.99437 at
the projection center and increases with the distance from the center.
If the contours were plotted over an extended geographical area, the
magnification would eventually become unity at the point 0°, =7°.

Figure 10 presents contours of equal magnification when L,)
equals 42°, -7° in equation (16)., Figure 11 presents similar contours
when L,) equals 38°, 0°, Finally, Figure 12 presents magnification
contours for L,A equal to the projection center, namely L,A equals
40°, -3°. Figure 12 is identical to Figure 6.

Figures 9 through 12 show that the magnification contours remain
symmetric about the vertical axis through the specified projection
center. Therefore, to minimize the distortion associated with the
mapping from the conformal sphere to the common coordinate plane,
the projection center should be located proximate to the center of
the geographical area of interest.

Figures 9 through 12 also show that a unity magnification contour
may be obtained through a designated locaticm within the geographical
area of interest by simply solving equation (16) for the appropriate
radiug of the conformal sphere. Using the resultant radius as the
value of E in the transformation equations will effect the desired
result. It is suggested that the unity magnification contour should
be located approximately midway between the projection center and
the maximum extent of radar coverage in order to decrease the registra-
tion error between observations of the same aircraft by different
radars.

EARTH RADIUS AND COORDINATE CONVERSION

Having obtained the radius of the conformal sphere that results
in a unity magnification along a particular elliptical contour, it
is necessary to determine whether this radiuvs is suitable for use in
the stereographic coordinate comversion algorithms. Intuitively one
could argue that the earth's radius to be used in the coordinate
conversion algorithm shculd be obtained from equation (16) based upon
the coordinates of the radar site location (L,A) and the origin of the
common coordinate plane (L ;A ). Such an approach would result in a
unique earth radius being 9ss8ciated with each radar site.

To ascertain the effect of a unique earth radius for each radar
site, the extent of the variation in the earth's radius over the
geographical area described by 36° < L < 44° and -9° < A < 3° was
determined, Equation {16) was sclved for varying (L,)) within the
geographical area with the origin of the common coordinate plane
located at L, = 40° and Ao = =3°, The resultant minimum and maximum
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values of the earth radii were approximately 3428 and 3440 miles
respectively. To determine the impact of such a variation in the
earth's radius, the stereographic coordinate conversion algorithm
and the impact of the earth’s radius therein will be considered.

Stereographic coordinate conversion consists of using slant
range and azimuth data, the height of an aircraft above sea level
and the elevatlion of the radar above gea level to obtain the stereo-
graphic projection of an aircraft's location onto the radar coordinate
plane. From page 31 of Reference 3, a coordinate conversion equation
which combines suitable accuracy with minimal processing requirements
is:

2 2, 4
g - = G0 an

1l +'E

where:
R 1is the stereographic ground range in the radar plane,
S 1is the measured slant range.

H 1is the measured height of the aircraft above sea level.
h 1is the elevation of the site above sea level.

E 1s the radius of the earth.

To determine the variation in the ground range R that results
from using site dependent earth radi{i, equation (17) has been evaluated
for several values of the numerator while E assumes the minimum and
maximum values for our hypothetical area of coverage., Table IV shows
the impact of using the minimum and maximum earth radii on the com-

putation of ground range.
Tebla IV

Ground Range Versus Earth Radius
R based on:

Numerator (Mi) Emin = 3428 Emax = 34&0
225 224 .8688 224.8693

100 99.5417 99.9419

30 29.9825 29.9826
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Examination of Table IV shows that there is no essential differ-
ence in the calculated ground range due to the varying earth radii.
Therefore, the earth radius as derived from equation (16) and which
yields a unity magnification coatour at a location approximately
midway between the projection center and the maximum extent of radar
coverage should also be used iz the coordinate conversion algorithm.
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SECTION IV

SUMMARY OF STEREOGRAPHIC PROJECTION ALGORITHM

INTRODUCTION

This section of the report reiterates the more important results
that have been indicated herein. Additionally, a summary of the
stereographic conversion and transformation equations is presented.
The conversion algorithms have been developed in Reference 3 and the
transformation equations have been derived herein.

ORIGIN OF COMMON COORDINATE PLANE

The latitude and longitude of the origin of the common coordi-
nate plane are stored parameters that are required for stereographic
projection of radar data. This origin should be chosen proximate to
the center of the geographical area of interest to equalize the map-
ping distortion about this location and to minimize the overall
distortion.

CHOICE OF EARTH'S RADIUS

Stereographic projection requires the mapping of points on or
above a designated location on the earth ellipsoid onto a sphere
which is called the conformal sphere. The radius of this sphere is
a stored parameter that is required by voth the stereographic trans-
formation and conversion algorithms.

Having selected the origin of the common coordinate plane as
described above and having selected a particular latitude and longi~
tude through which a unity magnification contour is desired, the
radius of the conformal sphere should be calculated from equation (18).
It is recommended that the unity mrgnification contour should be
located approximately midway between the origin of the common coordi~-
nate plane and the maximal extent of the radar coverage in order to
decrease the registration error between observations of the same air-
craft by different radars. The radius of the conformal sphere that
is obtained from equation (18) should be used in both the sterso-
graphic conversion and transformation algorithms.
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N Cos L [1 + Sin ¢ Sin ¢° + Cos ¢ Cos ¢° Cos (A-Ao)]

E = 7 Cos (18)
where:
E is the radius of the conformal sphere.
N ts Eq(l-c251n2L)™® where Eq = 3444.054 miles is
the earth's equatorial radius and where 2 = ,00672267
is the earth's eccentricity squared.
L is the geographic latitude of a designated loca~
tion. This is the angle which a normal to the
surface of an ellipsoid makes with the equatorial
plane as shown in Figure 4.
$,2 is the conformal latitude and longitude of a
point through which the unity magnification con-
tour is desired. ¢ 18 obtained via equation (19).
¢o'ko is the conformal latitude and longitude of the
origin of the common coordinate plane. ¢, is
obtained via equation (19).
CONFORMAL AND GEOGRAPHIC LATITUDE
The conformal latitude may be obtained from the geographic
latitude according to the relationship:
e/2
™ 4 (8)] - 1)+ (L)) - ______I-SSinL] 19
Tan [(4) * <2)] Tan [(4 + (2)] [1 ¥esinl a9

where:

¢ 1is the conformal latitude of a point, the geographic
latitude of which 1is L.

€ = ,08199189 1s the earth's eccentricity.

For computational convenience, the conformal latitude ¢ may be obtained
from the geographic latitude L by a seriegz approximaticn to equation (19).
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STEREOGRAFYHIC COORDINATE CONVERSION

Slant range, azimuth and height data should be projected into
E the radar tangent plane as described in Reference 3. When height
';i data 1s available the stereographic ground range R, the distance

i | . from the radar to the aircraft in the radar plane, should be cal-
;d culated as follows:

2 a2y
182 - em?
3 | ® T+ @/B (20)

4 When height data is unavailable, the stereographic ground range R
4 should be calculated according to: !

i

IR R T T TN T T LA NPT RV I TV RS Y N T T Ay

R = 1.0025 §$ - 0.65 : (21)

where: -
R 1is the stereographic ground range,

§ 1is the measured slant range.

H 1is the measured aircraft altitude above sea level,
h 18 the radar site elevation above sea level.
E is the radius of the conformal sphere from equatiom (18),

RADAR SITE COORDINATES

The rectangular coordinates of a radar site's locatjon or any

B other point on the earth's surface relative to the origin of the com-
mon coordinate plane should be calculated from equations (22). Pomi~
tive values of U. and V, correspond to locations that are east and
north of the origin of the common coordinate plane.
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Sin (x-xo) Cos ¢

Y% T B TTsmysime, ¥ Cos ¢ Con 3, Cos O—1)
. (22)
Sin ¢ Cos ¢_ - Cos ¢ Sin ¢ Cos (A=A )
V. = 2E 2 2 9
4 1 4+ 8Sin ¢ Sin ¢° + Cos ¢ Cos ¢° Cos (X-Xo)
where:
Ur’ Vr are the rectangular conrdinates of the point designated
by (L,A) in the common coordinate plane.
$,A are the conformal latitude and longitude of the point
to be projected.
¢O,Ao are the conformal latitude and longitude of the origin
of the common coordinate plane.
E is the radius of the confcrmal sphere from equation (18).
Latitudes north of the equator are defined am puuitive whereas
latitudes south of the equator are negative. Longitudes eac: ol the
prime meridian are defined as positive and those west of the prime
meridian are negative.
ANGULAR ADJUSTMENT OF RADAR DATA
Radar data, which are measured relative to true north at the
radar site location, should be adjusted so that the azimuth is rela-
tive to north at the origin of the common coordinate system. The
angular adjustment B is defined as follows:
(Sin ¢ + Sin ¢ ) Sin (X ~-})
B = Tan * = 2 (23)
Cos ¢ Cos ¢o + (1 + Sin ¢ Sin ¢°) Cos (X-Ao)
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where:

$,A are the conformal latitude and longitude of the
location of the radar site.

¢°,AO are the conformal latitude and longitude of the
origin of the common coordinate plane.

An azimuth datum 6, which is measured relative to true north at
the radar site, should be adjusted to true north at the origin of the
common coordinate system as follows:

8 = 06 +8

TRANSFORMATION FROM RADAR TO COMMON COORDINATES

The transformation from the radar coordinate plane to the common
coordinate plane should be accomplished by an approximation to the
stereographic transformation equation.

When aircraft height information is available, the rectangular
coordinates of an aircraft with respect to the common coordinate
origin should be calculated as follows:

U = U_+K|RSin (848) + 5

Rzlwrlsm [2(e+8) - ¥] ]
LE

(24)

4E?

RzlthCos [2¢648) - v]
V = vr + K { R Cos (64B) +

where:

Ur,V are the rectangular coordinates of the radar
site in the common coordinate plane.

R is the stereographic ground range in the radar
plane from equation (20),
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K = 1+ |w1,|2/4z2

- 2 o2k
lw_| v ®+ v

Y o= Ten ™t (U /V)

Equations (24) may be calculated by the following expressions which
preserve computational accuracy while minimizing the processing
requirements.

Azlwrl Sin [2(e48) - ¥]
U-Ur+T A Sin (0+8) + 42
E

A2|Wr|Cos [2(648) - v}
2

V = V_ 4 T| A Cos (6+8) +
r 4E

where:

A = [s2 ~ (Ii-h)zfi

When aircraft height information is unaveilable, the rectangular
coordinatee of an aircraft with respect tu the common coordinate
origin shoild be calculated from:

U = U +KRSin (0+B)

V = V_+EKRCos (648) (26)

where:

R is the stereographic ground range in the radar plane from
equation (21).
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APPENDIX A

THE STEREOGRAPRIC TRANSPORMATIGN FQUATION

From pages 86 and 133 of Reference 5, a point on the surface of
a spherical earth, the latitude of which 1s L and the longitude of
which is X, is stereographically projected onto a plane with an origin
at a latitude of L, and a longitude of A, by equation (A-1). The
resultant point in the plane of projection is designated by Z and its
rectangular components are X and Y.

exp [%(T-ik-10+iko)]- exp-[-k(t-iA—to+ixo)]

zZ =X+ 1Y = 2E1 - — (a-1)
exp Di(r 1A+1°+ixo)]+ exp [%(~ 1A+1°+1A°)T
where:
e’ = Tan (v/4 + L/2)
o
e = Tan (n/4 + LOIZ)
L = latitude of the point to be projected
L° = latitude of the coordinate origin
A = lcngitude of the point to be projected
Ao = longitude of the coordinate origin
; E = radius of a spherical earth
i
: Substituting A = k(t-1)), B = 4(~r +1A ) and C = k(1 +1) ),
D= k(-tl+ixl) and F = k(rl+ixl), Z may be expreased as:
A B -A -B B_ _-2A -B
z=208 2" _C - . g S-S ¢ (A-2)
. ‘A eC + e-A e-C ec + ‘-ZA ¢~C
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Solving equation (A-2) for exp (t-i}), we obtain

Z + 2EL exp (To)

exp (24) = exp (t-1A) 7L exp (IA,) - Z exp (1, + 11 ) (a-3)

Let us now stereographically project the point (L,3) onto a
plane with an origin of (Lj,A;). The resultant point in the plane
of projection 1s designated by W and its rectangular coordinates
are U and V. The form of W will be identical to equation (A-l)
except that t, will be replaced by 1y and A, will be replaced by ;.
The point (Ly,);) may be considered as the origin of the common
coordinate plane and the point (IL,,);) may be regarded as the origin
of the radar plane. Rewriting equation (A-1) as suggested, W in:

A D -A _-D (D-F) -2A ~(D+F)
W o= ZEi [~ e - 2Ei e -8 e

e ef e 1+ e 2A O (a-4)

Substituting from (A-3) into (A~4) and performing the requisite
manipulations, W may be expressed as:

Z exp(-t,)+2E4 exp(ro—rl)—ZEi exp[i(ko-kl)]+z exp[t°+i(A°-Al)]

2Ei
Z+2B1 exp(r°)+2E1 exp[—rl+i(ko-xl)]—z exp[(ro—¢1)+1(ko—xl)]

Z{exp[1(Ao-11)]+exp[-(t°+11)]} +2E1{exp(-rl)-exp[-r°+i(ko-ll)]}
1+ exp[-(T°+11)+1(A°-A1)] - 2z ZEi{exp(—To)-exp[—11+i(ko-11)]}
2
4E

Therefore, W may be written as:

exp [i(ko—xl)] + exp [—(ro+11)] exp(-tl) - exp [—roei(xo-xl)]

2 Trexp [-(r ) + 10 ,-2)] Ml rvery =G +1) 0 2]
W= 2 exp (-7 ) - exp[-‘rl+1()‘ _,\1)}‘ {A~5)
1 - — 2B1i o] o
4E? T+ exp F(1+7)) #O 2]
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Equation (A5) is the stereographic transformation equation.
We will now examine this equation term by term in order to express
it in a simpler form.

The fraction by which Z is multiplied in the numerator of equa-
tion (A-5) may be written as:

exp [1(A0-x1)] + exp [—(r°+11)] (eT + Cos A) + 1 Sin A
—~ = (A-6)
1+ exp [-(t +1) + 1A -2))] (1 + €' Cos A) + 1e’ Sin A

where: T = -(To + Tl)

A = (Ao - Al)

7, "1 + Sin Ly [ Cos Ly ]
e~ = Tan [%(n/2 + Ll =l—GstL ] LT -smL
L j - j.
e-rj - Tan B2 - 1) 1 - Sin Lj] N Cos L,
. Cos L 1+Sin L
3 - 3-
j = Oorl

Multiplying the numerator and dencminator of (A~6) by ita com~

plex conjugate, and performing the necessary algebra, (A-6) may be
expressed as:

2e" + e21 Cos A+ Cog A + i[Sin A (1-e21)1, (A-7)
1+ 2 Cosa + eZT
Calculating the real (R) and imaginary (I) portions of expression
(A-7) via the above definitions of exp (Tj) and exp (-rj), R and I may
be written as:
. Cos Lo Cos L1 + (1 + Sin L0 Sin Ll) Cos (Ao-Al)
«1 + Sin Lo Sin Ll + Cos Lo Cos Ll Cos (Xo—ll)
{A-3)
. (Sin L, + 3in Ll) Sin (xo-xl)

1 + Sin Lo &in L1 + Cos Lo Cos Ll Cos (10—11)
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though tedious to verify, it may be shown that R2+Iz equals
unity. Counsequently, (A-6) may be expressed in terma of its
polar coordinates as follows:

exp [-(TO + Tl)] + exp [i(xo-)‘l)] = [R2+12]& e-iB - e_is
1+ exp [--(1'° + rl) + i(ko-xl)]

where (A-9)
! (sin L, + Sin L;) Sia (A;-3))
Cos L Cos L, + (1 + 8in Lo Sin Ll) Cos (Xo-ll)
and
L,»A, are the latitude and longitude of the origin of

the radar coordinate plane.

Ll,Al are the latitude and longitude of the origin of
the common ccordinate plane.

From consideration of the definition of 6, it will be noted that
a positive B angle is measured in a counterclockwise direction from
the R axis. Having reduced (A-6) to e-1B, the leftmost term
in the numerator of equation (A-5) may be expressed by Ze *.

The right side of the numerator of equation (A-5) is:

exp (-17) - exp [-t_ + 1(A -2,)]

28 T exp [, + 1) + 10 A1

exp(ro—ixo) - exp(rl-iAI)A+ exp(—rl—ixl) - exp(—2111—10+1ho)
[exp(-ul) + exp(roﬂl—iko)] {1 + exp [-(roﬂl) + i(Ao-Al)]]

exp (ro-iko) - exp (tl-ill)
-iA )
o

= 2E1 -
exp (—1A1) + exp (T°+T1

exp [H(To-ixo-rl+1k1)] - exp [4§(r°~1ko—t
exp [&(To-iko+1

+,)]
11 W (A-10)

= 2Ei =
+1x1)] + exp [-ls(ro-ixoﬂlﬂxl)] r

1
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Therefore, the rigat side of the numerator of equation (A-5) is
which represents the origin of the radar plane projected onto the

common coordinate plane. The entire numerator of equation (A-5) is
(ze~1B 4+ w).

The fraction by which (-Z/4E”) is multiplied in the denominator
of equation (A-5) is:

- exp (—‘ta) - exp [—11+1()\°-Al)] - 2E1 exp (—-ro) -~ exp [-11+1(Ao-k1)]
1 + exp [-(To-’-‘l‘l) + i(xo-kl)] £Xp [i(lo-).l)] + exp [-(to-l-tl)]

exp [i(ko-kl)] + exp [—(r°+11)]

X
1+ exp [—(T0+Tl) + 1(Ao—ll)]

which from expression (A-9) 1is:

. (=) = exp [-1; + 1(2 -2))] L-18 a1
exp [1(o -A)] 4+ exp [-(r_+r )]

The term within the parenthesis may be expressed as:

exp [v +1(2X -1))] + exp (-7, H2 ) - exp {1,+ir ) ~ exp (-1 +i};)

-2Ei
lexp (r +r,+1A)) + exp (11))] { exp [1(X -},)] + exp (-G 4]}
o ) exp (ro + :LAQ) - exp (11 + 11\1)
H = -2E1
g‘: , exp (10 + T + ﬂo) + exp (ﬂl)
,,: N exp {11(10+i}.o-tl-i).1)} - eXp [%(‘04-1)\0-;1—“1)} - ﬁr i)

» | exp {l(t +1} +7,-11,)] + exp (5t +HA 41,-12))]

T ‘L 49




where W = U, - iV, is the complex conjugate of ¥,.. Therefore, ‘he
fractiof by which (-2/422) is meltiplied in the denominator of equa-
tion (A-5) is W e"1f

Substituting the results of expressions (A-Y) through (A-12) into
equation (A-5) yields:

L Ze'15+wr
W = — _‘_,—g (A—l3)
1-2 Wr e -
4E?
!
|
-
|
50
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APPENDIX B

PROJECTING THE EARTH'S SURFACE ONTO A PLANE

This Appendix derives for a spherical earth the equations which
! stereographically project points on the surface of the earth onto a
plane of rectangular coordinates, Figure B-1 depicts the geometry

for a spherical triangle with the origin of the coordinates at lati-

. tude L, and longitude A,. The voint to be projncted has coordinates
1y L,A.

In Figure B-1, N and E are the directions of north and east
respectively in the plane of projection. The line OP' is the ausc
OP projected into the plane. The angle y ir the plane corresponds
to the sphe~ical angle ZOF. @ is the angle between the radii drawm
B from the ea;th's center to the origin of the coordinate system and

< to the point to be projected.

RPNy

P

3 ’ From the lav of cosines for the spherical triangle OPZ, we obtain:

Cos PO = Cos PZ Cos 0Z + Sin PZ Sin O Cos PZO
i (3-1)

: Cos § = Sin L Sin L  + Cos L Cos L Cos (-2 )
From spherical triginometry, the relationship between two angles
and three sides 1is:
3 Sin PO Cos ZOP = Cos PZ Sin Z0 - Cos Z0 Sin PZ Cos PZO
(B-2)
Sin @ Cos Y = Sin L Cos LO - Sin L° Cos L Cos (A-Ao)
3 . From the law of sines:
Sin PO _ Sin PZ Sin @ - Cos L
. Sin P20 Sin ZOP Sin (A—ko) Sin vy
Therefore, Sin @ Siny = Sin (A—Ao) Cos L (B-3)

From equation (2) of Reference 3, the stereographic ground range
designated er herein, may be obtained from the relationship:

- Sin ¢
’ | |W.| = 2E Tan (9/2) 22 T Cos d
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The Ur’vr components of the projected point wt are obtained from:

3 - _ 2E 5in @ Sin y
2 U lwrl Sin v 1+ Cos 9

- r

54 (B=4)

2E Sin @ Cos Y
1+ Cos @

2 v, = |w| Cosy =

Substituting from equations (B-1), (B-2), and (B-3) into (B—4), we

2 obtain:
3 | 2E Sin (A-1_) Cos L
- Ut T THSInLSin L + Cos L Cos L Cos (A1)
(8-5)
4 2E[Sin L Cos L_ - Sia L Cos L Cos (A=A )]
V¢ T T¥sinLsinL_ + Cos L Cos L_ Cos (i-1)
) where:
L,A are the latitude and longitude of the point to
be projected onto the coordinate plane,
LsX, are the latitude and longitude of the origin
of the plane of rectangular coordinates.
. . Ur’vr are the rectangular coordinates of the point
% L,A in the plane of projection.
i .
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